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Final Report 

Attosecond Electron Processes in Materials: Excitons, Plasmons,                   
and Charge Dynamics 
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Office of Assistant Secretary of Defense for Research and Engineering 

Stephen R. Leone (University of California, Berkeley) 

Grant #: FA9550-10-1-0195 

Reporting Period: 1 May 2010 - 30 April 2015 

 

Abstract: 

A five year program focusing on investigation of attosecond electron dynamics in solid state 
materials is completed. Two experimental apparatuses for attosecond time-resolved extreme 
ultraviolet (XUV) studies were constructed. Highlights of results are: a 450 attosecond electronic 
response time in the conduction band of silicon was experimentally measured by observing steps 
in the L2,3-edge spectrum of silicon, synchronized with the excitation laser electric field. 
Independent electron and hole dynamics were observed in germanium by time-resolved ultrafast 
measurements on the M4,5-edge spectrum of germanium. A near-instantaneous spectral response 
over a broad range around the vanadium M2,3-edge, followed by a fast reshaping of the spectrum, 
was observed in VO2, suggesting a signature of the ultrafast insulator to metal transition.  

 

Introduction: 

The goal of this work was to understand the generation, transport, and manipulation of electronic 
charge carriers, multi-electron motion and dynamical electron correlations together with 
corresponding electronically induced excitations and phase transformations in solid state systems 
[1]. To study these processes, two specialized experimental setups were built. The constructed 
apparatuses utilize short visible laser pulses (4-7 fs) together with extreme ultraviolet (XUV) 
attosecond pulses at controlled time delay with attosecond time resolution. In general, the visible 
pulse serves as an excitation pulse that induces a rapid change in the electronic density. The 
XUV pulse serves as a chemically sensitive probe pulse utilizing specific core level transitions in 
atoms that are part of a material under study. The measurements follow electronic modification 
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of the energy levels and corresponding transition probabilities in these structures by analyzing 
the extremely rapid changes in the transient absorption of specific elements in the materials. 

The research that was performed during this program is based on previous knowledge and 
experiments in the Leone group. The group combined attosecond transient absorption methods 
[2, 3] that were developed and demonstrated in gas phase atomic media together with the 
experience that was gained during investigations of M2,3-edge spectroscopy of transition-metal 
oxides with femtosecond resolution [4]. 

During the program time, two experimental apparatuses for time-resolved extreme ultraviolet 
studies with attosecond resolution were constructed. Each apparatus (see one example in Fig. 1) 
includes a carrier-envelope phase stabilized laser system producing ~500 µJ pulses with 5 fs 
duration near 750 nm, a high harmonic generation chamber, a focusing chamber, and XUV 
transient absorption and photoelectron experimental chambers. These systems were built using 
funds from the NSSEFF DoD with additional support from the W.M. Keck Foundation. 
Production of isolated attosecond pulses has been established for both instruments.  

The highlights of the results that were obtained using the two apparatuses are the following. 
First, a tunneling effect in silicon was experimentally verified by observing sharp steps in the 
extreme ultraviolet (XUV) Si L2,3-edge spectrum synchronized with the excitation laser electric 
field [5]. The electronically induced modifications in the conduction band occur on 450 
attosecond timescales. These are the first attosecond-resolved experiments in a semiconductor 
band gap material, and they illustrate the unprecedented temporal resolution of electron 
dynamics and new findings that can be obtained using the XUV transient absorption method. 
Second, ultrafast band dynamics as well as independent electron and hole dynamics were 
observed in germanium by time-resolved study of the Ge M4,5-edge spectrum. Third, a near-
instantaneous spectral response over a broad range around the vanadium M2,3-edge, followed by 
a fast reshaping of the spectrum was observed in VO2, suggesting an ultrafast insulator to metal 
transition. Fourth, theoretical modeling was performed to predict possible attosecond 
measurements where an attosecond XUV pulse is used to eject electrons from a metal 
nanosphere in which a plasmon has been excited by a few-cycle optical pulse [6].  

Current and future utilization of the experimental setups that were built using NSSEFF DoD 
funds involve possible explorations of the insulator to metal transition in the magneto-resistive 
material PrxCa1-xMnO3, study of the charge carrier transport mechanism in perovskite type solar 
materials, carrier dynamics in gallium arsenide thin films, and real time investigations of 
plasmon dynamics in SiO2 covered gold nanospheres. Moreover, the accomplishments that were 
made possible through this program led to additional funding being awarded to the Leone group 
through the DARPA PULSE, ARO MURI, and AFOSR MURI programs. A goal of future 
programs is to construct an attosecond-attosecond system in collaboration with Prof. Zenghu 
Chang at the University of Central Florida and Prof. Paul Corkum at the University of Ottawa 
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(DARPA PULSE) and to investigate ultrafast electron dynamics in condensed matter with next 
generation attosecond X-ray sources (AFOSR MURI) in collaboration with Pierre Agostini, and 
Louis F. DiMauro from Ohio State University, Daniel M. Neumark from University of 
California, Berkeley, Mark I. Stockman from Georgia State University, Paul B. Corkum from 
University of Ottawa, Canada and Ferenc Krausz from Ludwig Maximilian University of 
Munich, Germany.  Below, the highlights of several results are described in more detail. 

 

Scientific and Technical Achievements and Findings: 

1. Table-top systems for time-resolved core-level spectroscopy with attosecond time 
resolution for condensed matter studies 

One of the two experimental systems that were built during the project duration using the funds 
from the NSSEFF DoD with additional support from the W.M. Keck Foundation is shown in Fig. 
1. Both systems include very similar design considerations that are described below. The main 
goal of the apparatus is to resolve sub-cycle charge dynamics upon photo-excitation in 
condensed matter systems.  

 

Figure 1: Experimental Setup. The experimental system starts with a commercial Carrier-Envelope Phase (CEP) 
stabilized Ti:sapphire amplified laser system. The outer arm is the visible pump pulse which initiates the electron 
excitation. The inner arm is used to generate the isolated attosecond probe pulse. Following the XUV generation the 
residual visible light of the probe arm is filtered out. The outer visible pump and inner XUV probe pulses are 
focused into the sample usually deposited on a 30 nm thick Si3N4 substrate. Following the interaction region, the 
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pump pulse is filtered out while the attosecond XUV probe propagates further and is spatially dispersed onto an 
XUV CCD camera. The time dependent XUV absorption spectra are recorded as a function of the time delay.  

In general, the experimental XUV transient absorption setup begins with a commercial 1 kHz 
Ti:sapphire carrier envelope stabilized (CEP) amplifier system (Femtopower Compact Pro). The 
25 fs pulses with 1.5 mJ energy at the output are focused using a f=1.5 m lens into a 250 micron 
hollow core fiber (HCF) filled with neon gas at atmospheric pressure to stretch the pulse 
spectrum from 60 nm FWHM centered at 800 nm into a ~180 nm FWHM spectrum centered at 
780 nm. Following the HCF the 0.5 mJ pulses are re-collimated using a f=1.5 m mirror into a 
dispersion compensation (DC) setup consisting of 4 pairs of PC70 chirped mirrors. The setup is 
optimized to compensate for the 4 m of air that the beam travels from the exit of the HCF and the 
entrance window of the vacuum chamber, the 0.5 mm fused silica (FS) entrance window, the 1 
mm beam splitter positioned at 45° and a pair of FS wedges to deliver 5 fs pulses to the front of 
the vacuum chamber. 

Following the DC, 0.5 mJ pulses are split using a beam splitter with a 80/20 ratio. The 
transmitted part is focused with a f=50 cm focal length mirror into a 4 mm length gas cell filled 
with krypton, argon or neon to produce ether a short train of isolated attosecond pulses or an 
isolated attosecond pulse (IAP), with various energy ranges from 25 eV to 120 eV. The XUV 
generation mechanism utilizes the process of High Harmonic generation (HHG) [7]. One 
difference between the two experimental systems that were built is in the frequency range of the 
XUV attosecond pulse and the corresponding process of creating an IAP during the HHG 
process. While one system is optimized to operate in the  30 eV-50 eV range by implementing 
the Double Optical Gating technique [8], the other system is optimized to operate in the 60 eV-
120 eV range by implementing the intensity gating technique. Following the HHG generation, 
the residual visible pulse is blocked using a 200 nm aluminum or zirconium foil. The remaining 
XUV pulses are focused into a 100 micron spot size in the interaction region using a 10° grazing 
incidence toroidal mirror (ARW optical corporation) with a 1m to 1m focal plane projection 
ratio. After the interaction region the XUV pulses are focused in the vertical plane and spectrally 
dispersed in the horizontal plane using a variable line spaced grating into a CCD camera (PIXIS 
400B). The reflected part of the beam is focused using a f=1 m mirror into a 150 mm spot size in 
the interaction region and spatially overlapped with the XUV pulse in a collinear geometry using 
a 45° 2 mm hole mirror located ~0.5 m before the interaction region. The relative delay between 
the pump and the probe pulses is controlled using a piezo stage. Following the interaction region 
the visible femtosecond pump pulse is blocked using a 200 micron pin hole followed by an 
additional 200 nm metal filter.  

Finally, the time dependent XUV absorption spectra are recorded as a function of the delay 
between the visible few femtosecond pulse and the IAP pulse. In addition to the unprecedented 
time resolution, the XUV spectrum of the IAP pulses coincides with many core level transitions 
for elements, such as first row transition metals, silicon, and germanium, allowing a time-
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resolved variant of x-ray absorption near-edge structure spectroscopy (XANES) [7]. The 
experimental apparatuses that were built using the NSSEFF DoD funding are very versatile and 
may be adapted for future experiments to study fast electronic responses in a variety of materials 
with chemical charge and elemental sensitivity on the attosecond to femtosecond timescales.  

 

2. Attosecond Dynamics in Silicon.  

Initial steps of the excitation of electrons from valence band (VB) states into mobile conduction 
band (CB) states were investigated for the first time using attosecond solid-state spectroscopy in 
real time in silicon [5]. The main finding of this study indicates that electrons injected into the 
conduction band by few-cycle laser pulses alter the silicon XUV absorption spectrum in sharp 
steps synchronized with the laser electric field oscillations. The observation of a ~450-attosecond 
step rise time during the excitation process provides an upper limit for the carrier induced band-
gap reduction timescale. Quantum dynamical simulations using time-dependent density 
functional theory (TD-DFT) interpret the carrier injection step as light-field–induced electron 
tunneling. This electronic response is observed to be followed by a slower lattice motion with a 
longer time constant of 60 femtosecond, resembling the period of the fastest optical phonon in 
silicon.   

 

Figure 2: Ultrafast spectroscopy of band-gap dynamics. (A) An intense few-cycle laser pump pulse with a spectrum 
covering the entire visible wavelength range excites electrons into the conduction band, where they are probed by an 
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attosecond XUV probe pulse. Changes in the electronic population of the conduction band are revealed as 
modifications of the silicon L-edge absorbance A and its derivative ∂A/∂E (B). By varying the time delay Δt 
between the two pulses, dynamic changes to the L-edge spectrum can be tracked and translated into the evolution of 
the conduction band population. 

The principles of attosecond transient absorption spectroscopy of semiconductors, which were 
developed under this project, are illustrated in Fig. 2 (reprinted from [5]). Attosecond pulses 
tuned to the silicon L2,3 edge centered at 99 eV, are used to measure the dynamics of electrons 
injected into the CB by few-cycle, intense near-infrared NIR laser pump pulses. The probe pulses 
are shorter than 100 attoseconds, as confirmed by photoelectron streaking spectroscopy and span 
a spectrum of XUV photon energies covering 80 to 125 eV. The corresponding streaking trace is 
shown in Fig. 3 (reprinted from [5]). 

 

Figure 3: Photoelectron kinetic energy acquired by inserting a Pd XUV filter in the attosecond pulse beam; the 
signal results from momentum shifting of photoelectrons of directly ionized neon atoms along the direction parallel 
to the electric field of the streaking laser pulse, plotted against the time delay between the ionizing XUV pulse and 
the streaking electric field. 

Fig. 2 (B) shows the recorded silicon L-edge absorbance A of a 250-nm-thick single crystalline 
free-standing silicon membrane in the <100> orientation, as well as the derivative of the static 
absorbance ∂A/∂E as a function of the XUV photon energy computed from the raw data, which 
facilitates assessment of excitation-induced broadening and shifts of the CB features. Whereas 
the initial state of the electron undergoing the XUV probe transition is a 2p core orbital, the final 
state of both the XUV probe and the NIR pump excitation lies within the CB manifold. Electron 
interactions in the CB alter the XUV transition, thus rendering the attosecond XUV absorption. 
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The laser-induced transfer of electrons to the CB results in a wealth of modifications to the XUV 
transition. Fig. 4 (A) displays the derivative of the L-edge absorbance spectrum, ∂A/∂E, as a 
function of time delay Δt between the NIR pump and the XUV-probe pulses. Excitation of 
silicon by a few-cycle intense NIR laser pulse results in a global broadening of the L-edge 
substructures. Most important, as seen in Fig. 4 (B), the spectrum recorded with carrier-
envelope-phase (CEP) stabilized NIR pump pulses evolves with a step like behavior 
synchronized with the half-cycle period of the pump electric field oscillations, indicative of sub-
femtosecond population transfer. Further, an effective reduction of the measured band gap (band-
gap narrowing) after the excitation is observed (Fig. 4 (C), blue line), and during the excitation 
pulse, a transient field–induced blue shift of the L-edge onset is recorded (Fig. 4 (C), red line). 
Finally, Fig. 4 (D) shows a clear bi-exponential decay of the signal recorded over an extended 
delay range with time constants of 5 fs (laser pulse limited, steps resolved in 450 as) and 60 fs, 
respectively, indicating the transition between purely electronic initial response after the laser 
pulse and convoluted electronic-lattice dynamics at longer time scales. 

 

 

Figure 4: Attosecond transient absorption spectroscopy of silicon. (A) The injection of electrons into conduction 
band states of silicon by a few cycle near-infrared laser pump-pulse modifies the derivative of the XUV absorbance 
∂A/∂E plotted as a function of probe-photon energy and time delay between pump and probe pulse. The color scale 
represents the value of ∂A/∂E. (B) A close-up of the temporal evolution of the XUV transmission at 100.35 eV 
reveals the increase of the signal amplitude in sharp steps synchronized with the laser electric field oscillations. The 
inset shows a fit to evaluate the step rise time (450 as). The blue line is a rolling average of the raw signal depicted 
in gray. (C) The position in energy of the first peak of the derivative [marked Λ in (A)] is plotted (red), along with 
the energy of the L-edge onset (marked Γ) evaluated at ∂A/∂E = 0.2 (blue). (D) tracks the amplitude of ∂A/∂E at 
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100.2 eV, the position of the maximum ∂A/∂E before excitation. The straight lines indicate the different time scales 
over which electronic (te) and nuclear (tp) dynamics occur. 

 

3. Electron Dynamics in Germanium Thin Films  

Complex electronic dynamics following an excitation of carriers from the valence band to 
conduction band by an intense few cycle visible pulse are measured using tabletop transient 
absorption XUV spectroscopy with a few femtosecond resolution.  The schematic excitation 
pathway together with M4,5 – edge absorption spectra are presented in Fig. 5. A poly-crystalline 
100 nm thick germanium sample, which is deposited onto a 30 nm silicon nitride substrate, is 
illuminated with a 5 fs visible pulse. The electron dynamics resulting from ultrafast population 
transfer induces changes in both the valence and conduction bands of germanium. Unlike the 
silicon experiments, which only probed the conduction band, it is experimentally demonstrated 
that one photon XUV transitions from the 3d state of germanium are sensitive to both the valence 
and conduction band carrier density populations, and there are corresponding changes to the 
structure of both bands as a result of the light-induced carrier transfer.   

 

Figure 5: (a) Pump-probe excitation diagram and schematic electronic band structure of germanium. (b) Schematic 
representation of femtosecond M4,5 - Edge absorption spectroscopy. (c) Germanium M4,5 - edge absorption spectrum 
at negative delay (black) and at τ=10 fs (red). 
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Figure 6 (a) presents a differential absorption spectrum of the M4,5 edge of germanium as a 
function of the probe pulse energy and pump-probe delay. The almost instantaneous change in 
the absorption spectrum in the vicinity of the Fermi level suggest fast electronic driven response 
of the conduction and valence band energies and occupancies as a result of carrier excitation. 
Fast increase in the absorption below the Fermi edge (see Fig. 6 (b)) is followed by a slow lattice 
driven response. In the case of the spectral region above the Fermi level, absorption bleaching is 
observed, followed by fast spectral recovery.  
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Figure 6: (a) Differential absorption spectrum of the M4,5 edge of germanium as a function of the probe pulse 
energy and pump-probe delay. The presented absorption spectra are normalized to the absorption at negative delay, 
showing absorption bleaching above the Fermi level (30 eV) and increased absorption above the Fermi level. (b) 
Differential absorption as a function of the pump probe delay at 28.16 eV (black) and 31.29 eV (red). 

 

4. Transient Absorption Spectroscopy of an Insulator-to-Metal Phase Transition Material: 
Vanadium Dioxide 

Changes in the vanadium 3p core level spectrum were observed with attosecond transient 
absorption upon excitation of carriers into the 3d conduction band of vanadium dioxide (VO2) 
using few cycles NIR pulses. By observing ultrafast photo-induced changes to the spectrum (see 
Fig. 7), measurements are sensitive to the rapid rearrangements in the density of states that can 
result from strong electron correlation and the insulator to metal phase transition (IMT).  VO2 
displays a near-instantaneous spectral response over a broad range around the vanadium M-edge, 
followed by a fast reshaping of the spectrum. The fast and persisting rise in absorbance at the 
Fermi level is suggestive of transition to a metallic phase, and the non-congruence of the fast 
spectral response with thermally induced changes hints at the importance of intermediate states 
in mediating the material’s photo-induced response. 

To gain access to the dynamics and changes in electronic structure that occur both before and 
after the lattice has time to respond, attosecond transient absorption measurements are performed 

(b)	
  (a)	
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on solid state VO2 thin films. The IMT is initiated by a few-femtosecond carrier-envelope-phase 
stabilized NIR pulse (5 fs FWHM, 760 nm central wavelength). The absorption of a time-
delayed, collinearly propagating attosecond pulsed light source (produced by high harmonic 
generation in argon) is measured around the vanadium M-edge with an extreme ultraviolet 
(XUV) spectrometer. Static M-edge spectra are measured for both insulating and thermally 
induced metallic phases and compared with the photoinduced changes. 

 

Figure 7: Transient changes in the XUV absorption spectrum of VO2, showing a fast increase in absorbance, 
followed by a redistribution of the spectral weight. 

As presented in Fig. 7, in the transient measurements, a fast rise in absorbance is observed across 
a broad spectral range surrounding the vanadium 3p M-edge at 40 eV, which appears during the 
NIR laser field within less than 10 fs. On longer timescales, on the order of 150 fs, a bleach is 
observed in the spectrum above the M edge, and an increase is observed at and below the Fermi 
level (located at 40 eV relative to the vanadium 3p core level transition that is probed). The 
increased spectral weight at the Fermi level is a common feature of both the heating induced and 
photoinduced responses, which is suggestive of a transition to a metal.  
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Figure 8: A comparison of photoinduced changes at different delay times with the static absorption spectrum and 
thermally induced changes. 

Apart from this common feature, the excited state that is sampled differs significantly from the 
spectrum of the thermally induced rutile metallic phase (see Fig. 8), exhibiting higher absorbance 
below 40 eV and a smaller magnitude of changes above 45 eV. These results suggest the IMT 
may proceed more quickly than previously thought, and the results highlight the importance of 
transient, intermediate states immediately following photoexcitation. 

 

5. Attosecond-resolved imaging of the plasmon electric field in metallic nanoparticles 

Models of possible experiments where an attosecond light pulse is used to eject electrons from a 
metal nanosphere, in which a plasmon has been excited by a few-cycle optical pulse, were 
theoretically explored [6]. The simulations indicate that the plasmon electric field will introduce 
several features in both velocity map images (VMI) and time-of-flight (TOF) photoelectron 
velocity traces that directly report the build-up, oscillation, and decay of the plasmon electric 
field.  In these simulations, streaking of photoelectrons emitted from silver nanospheres by 140 
attosecond pulses and excited by 5-fs NIR and visible light pulses was computed; these 
parameters are similar to those that can be obtained with the instruments built using NSSEFF 
funding.   
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Figure 9: Simulated reconstruction of the dynamical plasmon dipole moment of 80 nm silver nanospheres excited 
by a resonant 5-fs, 376 nm laser pulse using VMI (a) and ToF (b) techniques. (a) Plot of the breadth of the 
photoelectron final velocity distribution, inline image, versus time (red, left axis) and plasmon dynamical dipole 
moment amplitude (green, right axis). As shown in the inset, θ is the angle between the photoelectron final velocity 
and the laser polarization direction, and the inline image is the average over all θ of the breadth illustrated by the red 
double-headed arrow. (b) Plot of the standard deviation in speed measured using an electron time-of-flight with a 
30° full cone collection angle about the plasmon polarization axis versus time (blue, left axis) and plasmon 
dynamical dipole moment amplitude (green, right axis).  

The analysis showed that conventional VMI analysis by means of Legendre polynomial 
decomposition is not nearly as successful in reconstructing the plasmon dynamics as the width of 
the image intensity profile (see Fig. 9).  Similarly, the width of the TOF streaking trace will be 
more useful in reconstructing the plasmon dynamics than the mean of the measured velocity 
distribution, from which it is difficult to separately attribute laser and plasmon electric field 
contributions. An advantage of using VMI for plasmon electric field reconstruction was 
discovered through these simulations: for aligned non-spherical nanostructures, the velocity map 
images will reflect the spatial distribution of the plasmon electric field, enabling spatial and 
temporal reconstruction of its dynamics.   

It was found that the wide distribution of angles with respect to surface normal at which the 
photoelectrons can escape the nanostructure surface results in a correlation between the final 
electron velocity direction and the region of the nanostructure from which it originates. This 
property arises on the nanoscale because the inelastic mean free path (∼0.5 nm) of the primary 
photoelectrons inside the nanostructures is very small compared to the dimensions of the 
nanostructures. This correlation is useful for reconstructing not only the build-up and decay of 
the plasmon electric field in time, but also its spatial distribution. Velocity map imaging may be 
ideal to measure directly the temporal build-up and decay of the plasmon dipole moment 
amplitude for monodisperse nanospheres or aligned non-spherical nanostructures with 
attosecond temporal resolution and sensitivity to nanostructure aspect ratio and orientation. 

(b)	
  (a)	
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